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NOMENCLATURE

The amplitude of the exciting force.
Arbitrary functions used for the problem formulation in

the Runge-Kutta method.

and g,
h or At Time step.
M Number of periods corresponding to the exciting force.
T Period of the exciting force.
t Time.
Vo Initial velocity.
X Displacement
Xo Initial displacement.
y Velocity.
Greek Symbols:
The linear stiffness.
B The nonlinear stiffness.
3 The coefficient of viscous damping.

10}

The angular frequency of the exciting force.
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Abbreviation:

AMP
D
FREQ
MEAN
PD

VF

The spectral amplitude.
The deviation of the vibration frequency.

The spectral frequency.

The mean value of the vibration frequency.

The percentage deviation of the vibration frequency.

The vibration frequehcy.

"
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ABSTRACT

NUMERICAL STUDY OF THE NON-PERIODIC
RESPONSE OF THE FORCED DUFFING'S
OSCILLATOR

Bader Al-Deen Majed Hussein Bader

Supervised by
Dr. Mazen Al-Qaist

In the present study the forced Duffing's equation which represents the
equation of motion of the forced Duffing's oscillator was solved
numerically using the fourth order Runge-Kutta method. The solution was
studied with assistance of the time history and the phase plane trajectory
plots in a range of different system parameters. Frequency spectrum plots
were plotted out to know the frequency contents of the output waveforms
at cerfain cases. In general the response is non-periodic and the periodic

response is a special case of it.

The type of motion resulting for different parameters of the system was
classified into periodic, and non-periodic responses. The vibration
frequency was found and the percentage deviation from the mean value
was calculated. The effect of varying the parameters of the system on the

type of motion as well as on the vibration frequency of the system was

studied.
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{t was found that in the case of the periodic response, the waveform
repeats itself at equal intervals of time, the corresponding phase plane
trajectory plots are fine closed orbits. For the non-periodic response the
repetition of the waveform isnot constant but there is a small amount of
shifting, the corresponding phase plane trajectory plots are not fine closed
orbits but instead they spread from the both sides or could take certain
regular shapes. Also it was found that as the amplitude of the exciting
force increases, the amplitude and the frequency modulation effects
increase, but these modulations disappear as the exciting frequency

becomes much larger than the free vibration frequency.

It was shown that the vibration frequency obtained for periodic response
was a horizontal straight line indicating a constant value, but for the non-
periodic response it is fluctuating with time about a mean value and in
general it is periodic. Also, It was shown that as the nonlinear stiffness
increases, the vibration frequency increases. Increasing the amplitude and
the frequency of the exciting force will also increase the vibration
frequency. It was shown that the percentage deviation of the vibration
frequency about its mean value increases with increases in the nonlinear
stiffness and the forcing amplitude. Resonant conditions for the vibration
frequency with maximum percentage deviation was found to occur when

the exciting frequency is close to the free vibration frequency.
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CHAPTER ONE

INTRODUCTION

1.1 Duffing's Equation & Its Importance:

The harmonically forced Duffing's equation is one of the most important

nonlinear differential equations since it appears in various physical and

engineering problems.

The forced Duffing's equation in a general form may be given as:
¥+ &+ ox + i’ = Fcosax
Subjected to the initial conditions:

x(0)=x (initial displacement)
x(0) =V, (initial velocity)

where

$ is the coefficient of viscous damping.

o is the linear stiffness.
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B is the nonlinear stiffness.
F is the amplitude of the exciting force (harmonic excitation).

@ is exciting angular frequency.

and all derivatives are with respect to time t.

It should be noted that if the value of the linear stiffness parameter is

ositive, then the Duffing's oscillator is statically stable, if the value is
p g ,

negative , then the Duffing's oscillator is statically unstable, if the value
equals to zero, then the oscillator is neutrally stable. Also, if the value of
the nonlinear stiffness is positive, then the DufTing's oscillator is hardening,
if the value is negative, then the Duffing's oscillator is softening. In this

study the type of the oscillator is stable hardening oscillator.

Equation (1.1) is a second order nonlinear ordinary differential equation
which has no exact solution . So that approximate analytical methods (such
as perturbation and harmonic balance, etc.) or numerical methods may be

used to solve the equation.

The forced Duffing's equation could describe different systems of various
field of study such as mechanical, electrical, and chemical systems. It
represents the vibration of a mass attached to a nonlinear spring subjected
to harmonic excitation. Or, it may represent the large oscillation of a
pendulum subjected to harmonic excitation. Also, such equation can be
assumed to represent the forced vibration of a buckled beam in its
fundamental mode. Also, it could represent large bending deflections of an

electromagnetically driven steel beam held pinned to fixed supports.
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1.2 Solution Description of Duffing's Equation:

The forced Duffing's equation represents the equation of motion of a
second order spring-mass system with cubic nonlinearity subjected to
harmonic excitation. The solution of the nonlinear equation represents the
response of such system. In general, the response may be constdered as
non-periodic response into which the periodic response is a special case of
it In the case of the periodic response, the waveform is repeated
periodically, but this is not so in the general case; the non-periodic
response. The response whether it is periodic or non-periodic is very

dependent on the system parameters as well as on the initial conditions.

Among the variety of available descriptors of the solution of the Duffing's
equation, the following are of great significance and commonly used by
investigators :

(1) Time histories.

(2) Phase plane trajectories.

(3) Power spectral densities.

(4) Poincare’ maps.

Time history plot is self explanatory because it is simply the plot of

displacement x(t) versus time t. The results come directly from the solution

of the nonlinear equation.

The phase plane trajectory plot is the plot of velocity x(t) versus

displacement x(t) on the phase plane corresponding to certain initial

conditions.
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Power spectral density plot is necessary when the frequency content of a

given signal is to be known.

Finally, Poincare' map plot is not as straightforward as the others.
Generally speaking, it is a phase plane plot that record data at certain

instants of time. Tt is important in studying chaotic systems and strange

attractors.

1.3 Literature Survey:

In 1918, Duffing introduce a nonlinear oscillator with a cubic stiffness
term to describe the hardening spring effect observed in many mechanical
problems. Since then this equation which was known with his name

became one of the important examples in nonlinear oscillation texts and

research articles.

Most of the analytical methods used to solve the equation are approximate
methods. The general approach is as follows:

(1) Assume that the "small" nonlinearity is separable from the linear part of

the equation.

(2) Neglect the nonlinear terms, as a first approximation, to obfain a

general solution,

(3) Use the generating solution with the original equation to get the

corrective terms due to the nonlinearity.
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However, those methods are limited and only apply to periodic solutions
only.

Hamdan and Burton [1] have used the harmonic balance method to study
the steady state periodic responses and its stability for a softening
Duffing's oscillator. They have used two harmonics rather than one in the
approximate solution, and then they have observed that the qualitative

nature of the harmonic balance solution changed.

In [2], a theoretical discussion for finding conditions that result in periodic
solutions of Duffing's equation has been presented by Mehri and Ghorashi.
This has been done based on Green function and Schauder's fixed point
theorems. The importance of periodic solutions, from a practical point of
view, lies in the fact that all other non-periodic solutions of this equation,
which result from other initial conditions, if stable, converges to periodic
solutions. Thus the periodic solution express the steady state behavior of

the system under consideration.

In [3], different approximate analytical methods have been used by Dinca
and Teodosiu to solve the harmonically forced Duffing's equation at
different cases such as the undamped case, the case of viscous and

coulomb damping , and other cases.

The operational adaptation of the Lindsted-Liapounoff method by using
the table of Laplace transformation and the shorthand notation have been
used by Pipes [4] to obtain the steady state solution of the forced Duffing's

equation.
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A modification of the conventional Duffing's equation in which the linear

stiffness is negative gives what is called an unstable Duffing's equation.
Such an equation describes the vibration of a buckled beam or plate when
only one mode of vibration is considered under the action of a prescribed

external force.

Moon [8] have studied the chaotic vibrations of a cantilevered beam
buckled by magnetic forces. This was done by studying experimentally the
forced non-periodic vibrations about the multiple equilibrium positions of

the beam using poincare' plots in the phase plane.

In [9], the dynamics of a buckled beam have been studied for both the
initial value problem and the forced external excitation by Dowell and
Pezeshki. The principal focus was on chaotic oscillations due to forced
excitation. They have made a comparison of results from a theoretical
model with those from a physical experiment and they have shown that

there was generally a good agreement between them.

Dowell in a separate paper [10], have also made experiments on the
buckled beam. he has considered the relationship between chaos induced
by forced oscillations versus self excited oscillations. He has seen that the
initial value problem for a second order homogeneous system is a key to
the understanding of higher order system, including the inhomogeneous

second order system. he also has made a comparison between theoretical
results for Duffing's equation and (physical) experiments for a buckled

beam and this have shown generally good agreement.

Tang and Dowell [11] have investigated experimentally the chaotic

behavior of a buckled beam for forced deterministic excitation. In their
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oaner. (hey have included the effects of bigher modes on- (e chaoti

response. They have studied the influence of exciting force and damping
on the system response. They have seen that there was generally good
quantitative agreement between theoretical and experimental results

obtained by including up to three beam modes.

In this study the fourth order Runge-Kutta method will be used to solve the
forced Duffing's equation numerically. After solving, the vibration
frequency will be found and its nature will be studied. Also, the effect of
varying the parameters of the system on the type of motion as well as on
the vibration frequency will be studied. By considering the works done in
the literature we note that there are no works available in the literature
dealing with the nature of the vibration frequency of the Duffing's system

and the effects of varying parameters on it.
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CHAPTER TWO

SOLUTION PROCEDURES

71 Problem formulation & Solution Procedures
of the Duffing's Equation:
4156120

The fourth order Runge-kutta method was used to solve Equation (1.1)
numerically. The second order differential equation is first reduced to two

first order differential equations.
By letting X =1y , Equation (1.1) is reduced to the following two first

order equations

x=y x(0)=x, _
y=Fcosot—y—-ax—px’  y(0)=v,

.......... @2.nH
So that, in general form
X= f(t:-xsy)
y=28(tx,y)
.......... (2.2)

Where f and g are arbitrary functions.
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The computational equations to be used are programmed for digital

computer, the program was written in the programming language

FORTRAN (see Appendix C, Computer Program # 1).

The equations are in the following order :
f‘l = f(t,‘:x,‘:yi) =yi
g =8gt,x,y)= F cos wt, — 0y; — ax, _ﬂx?

h h h h
fr=r( to% +5f1=y,- +"2"81) =Y+ 8

h h h h h
g =8t +5.% t5 ey +8)= Feosa(t, +2) =8, +8)

- a(x, +"21f1)—ﬁ(xi +£21.f1)3

h h h h
= f(t,+—, %, += o, Y, += &)=Vt =
LH=fQ 5% 2fzy 28’2) Y+ 8

h h h h h
g3=g(ti+a—’xi+-2_'f2=yi+*2_g2)=Fcosw(ti+—2_)_5(yi+§gz)

h h ..
-a(x, +_2'f2)_ﬁ(xi +'2_f2)

f4 =f(ti +h’xi +hf3:yi +hg3) :y,—+hg3
g, = g(t, + h,x, + hfy,y, + hgy) = F cos (s, + h) - 3y, +hg,)

- a(x, +hf3) - B(x; +hf3)3

.......... (2.3)

Where h is the time step At.
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From (he previous equations the valucs of x and y are determined form the

following recurrence equations

Xing =X +“§'(f1 +2/,+2/5+ /4)

h
Yin =i +'g(gl +2g,+283+84)

Thus with i=0, at t;=ty+At, x, and y,are found by substituting the values of

Xo,Yo at to (the initial conditions) into Equations (2.3) and the recurrence

Equations (2.4) .

In this study, Equation (1.1) was numerically integrated on a digital
computer by using the fourth order Runge-kutta method. The time step for
the numerical simulation was chosen to be At=T/400 where T=2n/® is
the period of the exciting frequency . It was chosen like this because it
gives good results, the error in the fourth order Runge-kutta method is of
order h5 and hence the error is very small. Smaller time step were tried
with no significance change on the results. The time was started form zero
up to a reasonable value. This value was different according to the exciting
frequency ©. For ©=0.1, the time was ended at five periods of the exciting
force, this was denoted on the figures as M=5. For 0=1, M=30 and for ©

=10, M=150. These values was chosen in order to represent the best

configuration of the response.

/For simplicity, the damping effect has been ignored (6=0).All results are
for simulations started from the initial condition values of one for the
displacement (x(0)=1) and zero for the velocity (%(0) =0), linear

stiffiess is fixed constant (a=1),nonlinear stiffness takes the values(p
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~0.1,1, 2, and 10) , also the exciting frequency takes the values ((D=U.],],
5, and 10). For this combination of the values of nonlinear stiffness and the
exciting frequency, the amplitude of the exciting force F was varied from 0

to 1 with step of 0.1 .

After specifying all the unknowns; the values of the system parameters and
the initial conditions, we can apply the computer program to obtain the
solution of the nonlinear differential equation using the fourth order Runge-
kutta method. The computer program returns sequence of values
corresponding to displacement and velocity at discrete equispaced points
as a function of time. We can then plot out these results using time history
and phase plane diagrams in assistance with a graphics software. these

were shown on figures from Figure (3.1) to Figure (3.27).

2.2 Evaluation of the Vibration Frequency:

The main objective of present study is to find the vibration frequency (VF)
of the system and examine its dependence on time and study the effects of

the system parameters on it.

The vibration frequency was found by the following steps:

(1) Considering the time history plot of the response, the output
waveforms is divided into periods, this was done by finding the
intersections of the waveforms to the x-axis.

(2) Measuring the length of each period.
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(3) Evaluating the frequengy of each period by applying (VF=21/T) where
T is the length of the period, and also evaluating the time corresponding to
each period which is the location of the center of the period.

(4) Plotting out the frequency of that periods versus their time to see how

does the vibration frequency of the system changes with time.

To simplify the arithmetic operations, the previous procedures were
programmed to deal with any expected shape of the output waveforms (see
Appendix C, Computer Program # 2). Then, the results obtained from the
second computer program were plotted out using a graphics software to
obtain the vibration frequency (VF)-time plot. These were shown on the

same figures used for the time histories and the phase plane trajectories;

Figures (3.1) to (3.27).

2.3 Frequency Spectrum:

By using the fast Fourier transform (FFT) algorithm, the frequency
spectrum; the plot of the spectral frequency versus the spectral amplitude
of the output waveforms were obtained (see Appendix C, Computer

Program # 3). These results plotted out and shown on Figures (3.32) and
(3.33).
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CHAPTER THREE

RESULTS & DISCUSSION

3.1 Results:

The results obtained from this study are presented at the end of this
chapter. Figures (3.1) to (3.27) represent the solution of the nonlinear
differential equation at certain values. For example, in Figure (3.1) the
following values are taken: =0, o=1, f=0.1, ©=0.1, F=0, x¢=1, v;=0, and
M=5. These values appeared on the first plot of Figure (3.1). For brevity,
these values will appear after that in shortening case such as:

(0,1,0.1,0,1,0).
M=5

All the figures from Figure (3.1) to Figure (3.27) consist of three plots, the
first one is the time history plot, the second is the phase plane trajectory
plot, and the third plot is the vibration frequency(VF)-time plot. Under the
third plot, the mean value of the vibration frequency was measured (which
was denoted as MEAN) and presented there, also the deviation of the

vibration frequency to the mean value was measured (which was denoted
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as D) and its percentage to the mean value was calculated (Which was

denoted as PD) and the results were presented there.

To study the effects of varying parameters of the system on the vibration
frequency, certain figures were plotted out and these shown on Figures

(3.28) to (3.31).

To know the frequency contents of the output waveforms, the frequency
spectrum plots were plotted out; the plots of the spectral frequency (which
was denoted as FREQ) versus the spectral amplitude (which was denoted
as AMP). The results shown on Figures (3.32)and (3.33). Each figure
consist of two plots, the first one is the frequency spectrum plot for the
homogeneous Duffing's equation, and the second plot is the frequency
spectrum plot for the forced Duffing's equation at forcing amplitude of one
(F=1).

We should note that, not all the results were presented because they were
very large, but instead a sufficient amount of them were presented which

were useful in this study.

3.2 Discussion:
3.2.1 Choice of System Parameters & Initial Conditions:

For simplicity the damping effect was ignored for two reasons. Firstly, the

nonlinearity is included in the stiffness term. Secondly, damping introduces
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additional effects which may obscurc the dependence of the vibration

frequency on the system parameters. The linear stiffness value. was fixed,
this value was chosen to be positive, so that we have a stable Duffing's
oscillator. This oscillator has a single equilibrium position. The nonlinear
stiffness was chosen to take positive values, thus we have a hardening
Duffing's oscillator. These values were chosen to cover a wide range of
cases. For the same previous reason, wide range of values for the exciting
angular frequency were taken. The amplitude of the exciting force was
varied from zero to one with step of 0.1 . The case when F=0 gives the
homogeneous Duffing's equation. The initial displacement value was

chosen to be one, the initial velocity value was chosen to be zero.

3.2.2 Classification of the Type of Motion:

As we said before, for zero force amplitude, we have a homogeneous
Duffing's equation. The output response for this equation is periedic. For
periodic response, the waveform repeats itself at equal intervals of time.
The time history plot in Figures (3.1), (3.8),(3.12),(3.16), (3.20), and
(3.24) represent a periodic response. In this case the phase plane
trajectories corresponding to the previous figures in general form is an
ellipse. Itis a circle for Figures (3.1), (3.8), and (3.12) when the nonlinear
stiffness is very small (B=0.1), this is because the system behaves as a
linear system. The phase plane trajectory is an ellipse for Figures
(3.16),(3.20), and (3.24) when the value of the nonlinear stiffness is not
very small (f=1).
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n all figures from the beginning up to Figure (3.27) except the figures

associated with the homogeneous Duffing's equation described before, the
response is non-periodic. In this case the waveform does not repeat itself
regularly but there is a small amount of shifting which makes the response
is not exactly periodic response. In the present study the time histories for
the non-periodic response take certain shapes, such as beating waveforms,

sinusoidal-like waveforms and others.

3.2.3 Effect of the Parameters of the System on the
Output Waveforms:

Considering the first plot of Figure (3.1) (the time history plot), which
shows the output waveforms for the homogeneous Duffing's equation
where F=0. This situation represents the free vibration of the oscillator
with its own characteristic properties. The value of the vibration frequency
of the oscillator in this case appeared on the third plot of the same figure
which is a constant value and it equals to 1.035 . We can observe also,
there was an amplitude modulation effect on the output waveforms due to
the increasing in the forcing amplitude from 0 to 0.1. For the forced
vibration case when F=0.1, ®=0.1 the output waveforms appeared on the
first plot of Figure (3.2) makes us to believe that this output waveforms is
obtained by superposing the free and the forced vibration cases, but we
should keep in our mind that this is not a linear system but instead it isa
nonlinear one, which means that there could be a relation between the
input and the output but the relation is no longer linear as in the case for
the linear systems. In that case the value of the vibration frequency
decreased to 1.0299 due to the effect of the frequency modulation, because

the forcing frequency was 0.1 and the free vibration frequency was 1.035 .
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It is observed that forcing modulates the amplitude of the free vibration

some times at the forcing frequency (0.1) and also modulates the free
vibration frequency periodically at the forcing frequency. When the
amplitude of the exciting force increases from 0.1 to 0.2, the effect of the
forced vibration case increases as can be seen on the first plot (time history
plot) of Figure (3.3), in this case the value of the vibration frequency
decreased to 1.0245 as can be seen in the third plot of Figure (3.3)
(vibration frequency-time plot). The same thing can be seen in Figures
(3.4) to (3.6) where the increasing in the forcing amplitude increases the
amplitude and frequency modulation effects. In Figure (3.7) the value of
the vibration frequency was 0.10025, in this case the forced vibration case
is dominant because the value of the vibration frequency was closed to the
value of the forcing frequency. The same thing can be observed if we
followed Figures (3.17) to (3.19).

When the frequency of the exciting force is close to that of the vibrating
systemn, the output are beating waveforms. This can be observed for
Figures (3.9) to (3.11) and Figures (3.21) to (3.23) where the forcing
frequency is one (@=1) and the frequency of the vibrating system equals
1.026 . In the first plot of Figure (3.9) (the time history plot) where F=0.1,
the number of beating waveforms was two and a half, while it increased to
six beating waveforms when the amplitude of the exciting force increased
to 0.5 (F=0.5) as can be seen in the first plot of Figure (3.10). The number
of the beating waveforms increased to nine beating waveforms when the
amplitude of the exciting force increased to one (F=1) as can be seen in the
first plot of Figure (3.11) which means that increasing in the forcing
amplitude increases the amplitude modulation effect. The value of the
vibration frequency for the homogeneous Duffing's equation in this case

was 1.026 as can be seen in the third plot of Figure (3.8). When the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



19

forcing amplitude  increases 1o 0.1(F=0.1), the value of the vibration

frequency decreased to 0.9997 as can be seen in the third plot of Figure
(3.9), then it decreased to 0.9775 when the forcing amplitude increases to
0.5 (F=0.5). This means that, increasing in the forcing amplitude increases
the frequency modulation effect, because the effect of the forced vibratton
case increases which has a frequency less than the free vibration
frequency. When F=1, the forced vibration case is the dominant case and
thus the value of the vibration frequency increased to 0.98979 as can be
seen in the third plot of Figure (3.11). The same thing observed for Figures
(3.20) to (3.23), the value of the vibration frequency was 1.32 for the free
vibration case, then it decreased gradually as the forcing amplitude
increases until it reaches 0.99 at F=0.5, then it starts to increase due to the
effect of increasing in the forcing amplitude, at which the forced vibration

case is the dominant case.

In Figures (3.13) to (3.15) and Figures (3.25) to (3.27) where the forcing
frequency equals ten (©=10) and it is much greater than the free vibration
frequency value, the system will vibrate in this case at a vibration
frequency close to the free vibration frequency with some amplitude and

frequency modulations.

Considering the second plot of Figure (3.1) (the phase plane trajectory
plot) which is associated with the homogeneous Duffing's equation, we
note from the plot that it is a fine closed orbit. The same thing was
observed for Figure (3.8), (3.12), (3.16), (3.20), (3.24) into which the
phase plane trajectory plot were fine closed orbits which represent a
periodic response. As the forcing amplitude increases from 0 to 0.1, the
trajectories spread from the both sides, as it can be seen from the second

plot of Figure (3.2) (phase plane trajectory plot). This thickness increases
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as the amplitude of the exciting force increases as can be seen in Figures
(3.3) to (3.7). The same thing was observed in Figures (3.13) to (3.15),
Figure (3.9), Figures (3.17) to (3.19), Figure (3.21), and Figures (3.25) to
(3.27).

In Figures (3.10) and (3.11), and Figures (3.22) and (3.23) the matter is
different because the output waveforms are not simple waveforms (beating
waveforms), even though we can observe the effect of increasing the

forcing amplitude on the shape of the phase plane trajectory plots.

3.2.4 Vibration Frequency:

Examining the third plot of Figures (3.1) to (3.27) (the vibration frequency-
time plots) we note that for the case of the homogeneous Duffing's
equation the vibration frequency-time plot is a horizontal straight line
indicating that its value is constant, this can be seen from the third plot of
Figures (3.1),(3.8),(3.12),(3.16),(3.20), and (3.24).

By considering the third plot of Figure (3.2) (vibration frequency-time
plot),we note that the shape of the vibration frequency looks like a
sinusoidal curve. The same thing observed for Figures (3.3) and (3.4). In
Figure (3.5) the top peaks became more flat than the lower peaks. In
Figure (3.6) the top peaks take approximatély the V-shape. In Figure (3.7)
the vibration frequency-time plot takes the beating curve. For small forcing
amplitude, the vibration frequency is modulated by the harmonic force at

the forcing frequency (0.1).
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In Tigures (3.9) and (3.10) the shape of the vibration frequency-{im plot

looks like a sinusoidal curve. In Figure (3.11) the shape is generally
periodic.

In Figures (3.13) to (3.15) and Figures (3.25) to (3.27) the vibration
frequency-time plot take the beating curve while they were generally

periodic for Figures (3.16) to (3.23).

We can conclude that in the case of the non-periodic response the
vibration frequency-time plot is fluctuating. For these cases the mean value
was measured and also the deviation and its percentage to the mean value

were calculated. It is appeared from the plots that in general, the vibration

frequency-time plot is periodic.

3.2.5 Effect of the Nonlinear Stiffness on the Vibration
Frequency:

Figure (3.28) illustrates the influence of the nonlinear stiffness on the

vibration frequency. The vibration frequency is evaluated at forcing
amplitude  of one (F=1), for two different values of exciting frequency
=0.1 and 10 . The relation between them is a direct relationship, as the
nonlinear stiffness increases, the vibration frequency increases as can be

seen form the first and the second plots of Figure (3.28).
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1.6 Effect of the Amplitude of the Exciting Force on the

Vibration Frequency: .

Considering Figure (3.29) which illustrates the influence of the forcing
amplitude on the vibration frequency. The vibration frequency is evaluated
at forcing frequency of ten (©=10) because in this case the exciting
frequency much greater than the free vibration frequency and thus the
forced vibration case is the dominant case, it is evaluated for two different
values of the nonlinear stiffness p=0.1 and 1, it is observed that the
relation between the forcing amplitude and the vibration frequency is
direct as can be seen from the two plots. For all vatues of the nonlinear
stiffness as the amplitude of the exciting force increases, the vibration

frequency increases.

3.2.7 Effect of the Frequency of the Exciting Force on the
Vibration Frequency:

Figure (3.30) illustrates the effect of the exciting frequency on the
vibration frequency. The vibration frequency was evaluated at a forcing
amplitude of one (F=1), and at three different nonlinear stiffness values

(B=0.1,1,2). It is observed that the relation between the vibration
frequency and the exciting force is direct, as the exciting frequency

increases, the vibration frequency increases for all values of the nonlinear

stiffness.
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The forgoing results show that the forcing frequency affects the mean
vibration frequency to a far greater extent than either the forcing amplitude

or the nonlinear stiffness.

3.2.8 Effect of the Nonlinear Stiffness on the Percentage
Deviation of the Vibration Frequency:

Considering the first plot of Figure (3.31) which illustrates the relation
between the nonlinear stiffness and the percentage deviation of the
vibration frequency (PD). The values of the percentage deviation was
calculated for m=10, F=1. It is observed that the relation between the
nonlinear stiffness and the percentage deviation almost constant for small

nonlinear stiffness values and increase for large values of the nonlinear

stiffness.

3.2.9 Effect of the Amplitude of the Exciting Force on the
Percentage Deviation of the Vibration Frequency:

Considering the third plot of Figure (3.31) which illustrates the relation
between the exciting amplitude and the percentage deviation of the
vibration frequency . The values of the percentage deviation were
calculated for B=1, ©=10. It is found from the plot that the relation
between the forcing amplitude and the percentage deviation is direct, as

the nonlinear stiffness increases, the percentage deviation increases too.
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1710 Tiffect of the Frequency of the Exciting Force on
the DPercentage Deviation of the Vibration
Frequency:

The second plot of Figure (3.31) illustrate the influence of the exciting
frequency on the percentage deviation of the vibration frequency. The
values of the percentage deviation were calculated for p=10, F=1. The
plot is a curve. At first, as the exciting frequency increases, the percentage
deviation increases until it reaches a maximum value, then it begins to
decrease. The maximum value was at forcing frequency equals to one
which represents the resonant case for that oscillator into which the free

vibration frequency and the forcing frequency are equal.

The results show that the forcing frequency affects the percentage
deviation of the vibration frequency much more that either the forcing
amplitude or the nonlinear stiffness. In addition, the vibration frequency is

found to resonate when the forcing frequency equals the free vibration

frequency.

3.2.11 Frequency Spectrum:

The frequency spectrum plots were found at B=1, and for values of forcing

frequency ®=0.1, and 1, these found for the homogeneous Duffing's

equation and the forced Duffing’s equation when the forcing amplitude

equals one (F=1).
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Considering the first plot of Figure (3.32) (the homogeneous Dufﬂng‘s

equation case) which shows that the spectrum consists of one frequency
component which is the free vibration frequency at a value about 1.3 . In
the second plot of the same figure where it was found at the forcing
frequency of 0.1 (0=0.1), there were a spectrum centered at the location of
the free vibration frequency and other component for the forced vibration
frequency at a value of 0.1 . We note also that the spectral amplitude

decreased for the free vibration component in this case.

In Figure (3.33) the frequency spectrum plots were found at a forcing
frequency of one (w=1). In the second plot of this figure there were
appeared a spectrum centered at the location of the free vibration
frequency at a value about 1.3 and the other component for the forced
vibration at a value of one. Also we note that the spectral amplitude

decreased for the free vibration frequency component in this case.
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frequency-time plot for f=0.1, ©=10, and F=0

49

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



(2)
(0.1,0.1,10,0.1.1.0)
M=150

110
0.58 !\ f\
0.66

0.44
0.22

> 0.00
-0.22

bl ol Tea | ol Isof | 60l | o § (8p] | 90] toO0

-0.44
-0.68 |

ol |

110"

)

0.0M.38 0.76 [1.14 1.52 1.90
- X

-1 20 L

50

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



FUTPRRPRR SR T

(©)

1.036530

1.036457 |
1.0363B4 |
1.036311 ;
1.036238 |
- 1.036165 |
1.036092 |
1.036019 |
1.035946 |
1.035873 |
1.035800 .

e
(o e
o=
- o
-
R
O

0 25 50 75 100 t25 150 175 200 225 250
]

MEAN=1.0362745, D=2.555 E-3, PD=0.02%

Figure (3.13) Time history, phase plane trajectory, and vibration

frequency-time plot for $=0.1, ©=10, and F=0.1

{l

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



(a)

1iop
0.88 ﬂ ﬂ I
0.66
0.44
0.22
0.00

(0.1,0.1,10,0.5,1,0)

M=150

-0.22
-0.44

~0.66
ol

-1.10%

i 19

50

71

8pf |90f 100

(b)

-1.90-1.52-1.1

-0.76-0.38
-0.24

-0.48 ]

.14 1.52 190
X

il

sity of Jordan - Center of Thesis Deposit



(©)

vr

1.03490

1.03820 1
1.03787 |
1.03754 }
1.037221 |
1.03688 }
1.03B655 |
1.03622 1
1.03589 ¢
1.03556 I
1.03523

TN

NV

0 25 50 75 100 125 150 t75 200 225 230
t

]

MEAN=1.0366, D=1.4025 E-3, PD=0.14%
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Figure (3.15) Time history, phase plane trajectory, and vibration
frequency-time plot for p=0.1, 0=10, and =1
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Figure (3.16) Time history, phase plane trajectory, and vibration

frequency-time plot for =1, ©=0.1, and F=0
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Figure (3.18) Time history, phase plane trajectory, and vibration
frequency-time plot for p=1, ®=0.1, and ['=0.5
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Figure (3.19) Time history, phase plane trajectory, and vibration
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Figure (3.21) Time history, phase plane trajectory, and vibration
frequency-time plot for =1, w=1, and F=0.1
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frequency-time plot for B=1, o=1, and F=0.5
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Figure (3.23) Time history, phase plane trajectory, and vibration
frequency-time plot for f=1, 0=1, and F=1

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



(a)

1.0¢

0.8

0.6

0.4
0.2

> 0.0
~-0.2
-0.4

-0.6}
-0.8}
-1.0%

(0.1,1,10.0,1,0)

m

100

)

1.08}
0.817%

0.54¢
0.27 )

I a W alal
pnw e §

-2.20-1.76—-1.32-{0.88-0.44 0.0m.44 083 1.32 1.76 2).(20

-0.27
-0.54 |
-0.81 ¢
=1.08|

-1.35%0

12

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



(c)

1.3180

VF

1.3000

1.3162 |
1.3144 |
1.3126 |
1.3108 |
3000 |
1.3072 |
1.3054 |
1.3036 |
1.3018

099669660066999900069900999996)990006989000669@00

i N i L i a 1 i 1 1 i ' ‘ i PR

25 50 75 100 125 150 175 200 225 250
t

MEAN=1.3172, D=0, PD=0
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frequency-time plot for p=1, ®=10, and F=0
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frequency-time plot for =1, ®=10, and F=0.1
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Figure (3.26) Time history, phase plane trajectory, and vibration
frequency-time plot for =1, =10, and F=0.5
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Figure (3.27) Time history, phase plane trajectory, and vibration
frequency-time plot for f=1, ®=10, and I'=1
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Figure (3.28) Effect of the nonlinear stiffness on the vibration frequency
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Figure (3.29) Effect of the amplitude of the exciting force on the

vibration frequency
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CHAPTER FOUR

CONCLUSIONS

(1) For periodic response the waveform repeats itself at equal intervals of
time, and the corresponding phase plane trajectory plots are fine closed
orbits. For the non-periodic response the repetition of the waveform is not
exactly constant but there is a small amount of shifting, the corresponding
phase plane trajectory plots are not fine closed orbits but instead it spreads

from the both sides or could take regular certain shapes.

(2) As the amplitude of the exciting force increases, the amplitude and the
frequency modulation effect increase, and this effect is reduced as the

exciting frequency becomes much targer than the free vibration frequency.

(3) The vibration frequency-time plot for periodic response was a
horizontal straight line indicating a constant value. For the non- periodic

response it is in general periodic when the forcing amplitude is not large.

The changing nature of the vibration frequency becomes complicated for

large forcing amplitude and the system undergoes chaotic motion.
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(4) Increasing the nonlinear stiffness, increases the vibration frequency.

(5) Increasing the amplitude of the exciting force increases the vibration

frequency.

(6) The relation between the frequency of the exciting force and the

vibration frequency is direct, as the exciting frequency increases, the

vibration frequency increases too.

(7) Increasing the nonlinear stiffness increases the percentage deviation of

the vibration frequency.

(8) Increasing in the frequency of the exciting force will increase the
percentage deviation at first until it reaches a maximum value (this value

around the resomant case) then it begin to decrease. The vibration
frequency resonates when the forcing frequency equals the free vibration

frequency.

(9) Increasing the amplitude of the exciting force will increase the

percentage deviation of the vibration frequency.

(10) The effect of the forcing frequency on the mean vibration frequency
and on its percentage deviation are much greater than those of the forcing

amplitude and the nonlinear stiffness.

(11) The error in the fourth order Runge-kutta method is of order h® and
hence excellent accuracy was obtained by using this method, also itis

stable and easy to program.
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APPENDICES

Appendix A : Runge-Kutta Methods

Each Runge-kutta method is derived from an appropriate Taylor method in
such a way that the global truncation error is of order hN. A trade-off is
made to perform several function evaluations at each step and eliminate
the necessity to compute the higher derivatives. These methods can be
constructed for any order N. The Runge-Kutta method of order N=4 is
most popular. It is a good choice for common purposes because it is quite
accurate, stable, and easy to program. Most authorities proclaim that it is
not necessary to go to a higher-order method because the increased
accuracy is offset by additional computational effort. If more accuracy is

required, then either a smaller step size or an adaptive method should be

used.

The fourth-order Runge-Kutta method simulates the accuracy of the Taylor
series method of order 4. The proof is algebraically complicated and
results in a formula involving a linear combination of function values. The

coefficients involved are chosen so that the method has a local truncation

error of order h, and hence a global truncation error of order h4.
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Let f(¢,y) beacontinuous function of t and y. The initial value problem

is to solve

d
D=0 witn Y1) =Y

A solution to the initial value problem is a differential function y(t) with

property that when t and y(t) are substituted in f(t,y) the result is equal

to the derivative y’(), that is
y'(t)=f(t,y(t)) and y(t,) =¥,

The Runge-Kutta method requires that the interval is divided into

subintervals of equal width h. Starting with (to,yo), four function

evaluations per step are required to generate the discrete approximations

(t;,y;) as follows:

h
Yinn = i +'6‘(f1 +2f, +2f; + f4)

Where
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f4 =f(ti+h’yi+hf3)

Appendix B : Fourier Transforms

The Fourier transform has become the underlying operation for the modern
time series analysis. In many of the modern instruments for spectral
analysis, the calculation performed is that of determining the amplitude and

phase of a given record.

The Fourier integral is defined by the equation

x(1)= [ X(f)e™df

In contrast to the summation of the discrete spectrum of sinusoids in the
Fourier series, the Fourier integral may be regarded as a summation of the
continuous spectrum of sinusoids. The quantity X(f) in the above equation
is called the Fourier transform of x(t), which may be evaluated from the

equation
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X(N)=| xne™d

Equation (B.2) resolves the function x(t) into harmonic component X(f),
whereas Equation (B.1) synthesizes these harmonic components to the

original time function x(t). The two equation above are referred to as the

Fourier transform pair.

Fourier transform pair could apply to discrete time functions, thatis,
functions that are represented by a time series, a sequence of values at a

discrete equispaced points which may come from experimental data or

digital calculations.

The Fourier transform, Equation (B.1) and (B.2), for discrete time

functions is computed by numerical integration, as follows

f.12

1 27
x(t,) = fj‘fﬂ X(f)e>™df

X(f)= ix(t,,)e‘”“ﬁ"

n=—oo

Where
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[=1/AL ig the campling frequency.

t,=N At, is the time corresponding to the nth time value,

N is the number of the data points.

If truncation is performed in the time series and discretization and
truncation is similarly performed in the frequency function, the discrete

transform becomes

N-1
_ i2rkn/N)
xn - Xke
k=0
.......... (B.5)
1 = i(2nkn! N
X, =—ane"'( /N
N n=0
.......... (B.6)

Because the infinite continuous integrals of Equations (B.1) and (B.2) have
been replaced by finite summations, the transform pair above, known as
the discrete Fourier transform (DFT), is much better adapted to digital
calculations. Even so, it can be seen that in order to obtain N frequency
components from N time points (or vice versa) requires N2 complex
multiplicati. A calculation procedure known as the fast Fourier transform
(FFT) algorithm obtains the same result with much smaller number of

complex multiplications.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



97

Appendix C: Computer Programs:

Computer Program #1:

C--- -
C THIS COMPUTER PROGRAM IS USED TO FIND THE NUMERICAL

C SOLUTION OF THE FORCED DUFFING'S EQUATION USING THE
C FOURTH ORDER RUNGE-KUTTA METHOD, AFTER PLOTTING IT
C GIVES THE TIME HISTORY AND PHASE PLANE DIAGRAMS.

C

10

DELTA=0.0

ALPHA=1.0

X0=1.0

Y0=0.0
READ(*,10)BETA,W,F,P
FORMAT(F10.6)

PERIODF=6.283185/W
H=PERIODF/400.0
TF=P*PERIODF

DO 20 T=H,TF,H

F1=Y(

G1=F*COS(W*T)-DELTA*Y0-ALPHA*X0-BETA*X0**3
F2=Y0+H/2.*¥G1
G2=F*COS(W*(T+H/2.))-DELTA*(Y0+H/2.*G1)-ALPHA*(X0+H/2 *F1)-
BETA*(X0+H/2.¥F1)**3

F3=Y0+H/2.*G2
G3=F*COS(W*(T+H/2.))-DELTA*(Y0+H/2.*G2)-ALPHA*(X0+H/2.*F2)-
.BETA*(X0+H/2.¥F2)**3

F4=Y0+H*G3
G4=F*COS(W*(T+H))-DELTA*(Y0+H*G3)-ALPHA*(X0+H*F3)-
.BETA*(X0+H*F3)**3

X=X0+H/6.*(F1+2.*F2+2.*F3+F4)

Y=Y0+H/6.¥(G14+2.*G2+2.*G3+G4)

WRITE(*,30)T,X,Y

30 FORMAT(1X,F8.4,1X,F14.6,1X,F14.6)

20

X0=X
YO0=Y
CONTINUE
STOP

END
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Computer Program # 2:

C -

C THIS COMPUTER PROGRAM IS USED TO FIND THE VIBRATION
C FREQUENCY OF THE SYSTEM CORRESPONDING TO A CERTAIN
C WAVEFORMS WITH ANY EXPECTED SHAPE, AFTER PLOTTING IT
C GIVES THE VIBRATION FREQUENCY(VF)-TIME PLOTS.

C -

REAL XX(800),XMAX(400),TMAX(400)
INTEGER TYPE :

DELTA=0.0

ALPHA=1.0

X0=1.0

Y0=0.0

READ(*,10)BETA,W,E,P
10 FORMAT(F10.6)

PERIODF=6.283185/W
H=PERIODF/400.
TF=P*PERIODF

I=0

M=0

XM=3.7

TM=0.0

READ(*,20)0TYPE
20 FORMAT(I1)

DO 30 T=H,TF,H

F1=Y0

G1=F*COS(W*T)-DELTA*Y0-ALPHA*X0-BETA*X0**3
F2=Y0+H/2.*G1
G2=F*COS(W*(T+H/2.))-DELTA*(Y0+H/2.*G1 }-ALPHA*(X0+H/2.*F1)-
BETA*(X0+H/2.*F1)**3

F3=Y0+H/2.*G2
G3=F*COS(W*(T +H/2.))-DELTA*(Y04+H/2.¥*G2)-ALPHA*(X0+H/2.¥F2)-
BETA*(X0+H/2.*F2)**3

F4=Y0+H*G3
G4=F*COS(W*(T+H))-DELTA*(Y0+H*G3)-ALPHA*(X0+H*F3)
BETA*(X0+H*F3)**3

X=X0+H/6.*(F14+2.*F2+2.*F3+F4)

Y=Y0+H/6.*(G1+2.*G2+2.*G3+G4)
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IF(TYPE.EQ.1)THEN
IF((X0*X).LT.0.)THEN
I=[+1
XX(D=T-H/(X-X0)*X
ENDIF
ELSE
IF(X.LE.0.0)GOTO 40
IF(X.GT.X0)THEN
T™=T
XM=X
ELSE
IF(X0.EQ.XM)THEN
I=1+1
TMAXI)=TM
XMAX(D=XM
ENDIF
ENDIF
ENDIF
ENDIF

40 X0=X
YO=Y
30 CONTINUE

IF(TYPE.EQ.1)THEN
DO 50 J=1,(1-1)/2
TT=(XXQ2*I+1)+XX(2*]-1)/2.
=6.283185/(XX(2*J+1)-XX(2*]-1))
WRITE(*,60)TT,WW
60 FORMAT(1X,F14.6,1X,F14.6)
50 CONTINUE
ELSE
XM=3.7
TM=0.0
DO 70 J=1,I-1
IF(XMAX(J+1).GT.XMAX(J))THEN
TM=TMAX(J+1)
XM=XMAX(+1)
ELSE
IF(XMAX(J).EQ.XM)THEN
M=M+1
XX(M)=TM
ENDIF
ENDIF
70 CONTINUE

9
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DO 80 L=1,M-1

TT=(XX(L+D+XXL))2.
WW=6.283185/(XX(L+1)-XX(L)
WRITE(*,20)TT,WW
00 FORMAT(1X,F14.6,1X,F14.6)
80 CONTINUE
ENDIF

STOP
END

Computer Program # 3:

THIS COMPUTER PROGRAM IS OBTAINED FROM THE NAG
LIBRARY WHICH IS USED TO FIND THE FREQUENCY
SPECTRUM PLOTS, BY USING THE (FFT) ALGORITHM.

RO RO RY!

CO6EAF Example Program Text
Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NMAX
PARAMETER (NMAX=4000)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
* . Local Scalars ..
INTEGER IFAIL, J, N, N2, NJ
* .. Local Arrays ..
DOUBLE PRECISION A(0:NMAX-1), B(0:NMAX-1), X(0:NMAX-1),
+ XX (0:NMAX-1),AMP(0:NMAX-1),POWER(0:NMAX-1)
* ., External Subroutines ..
EXTERNAL CO6EAF, CO6EBF, CO6GBF
.. Intrinsic Functions ..
INTRINSIC MOD
* . Executable Statements ..
WRITE (NOUT,*) 'CO6EAF Example Program Results’
Skip heading in data file

* ¥

*

¥*

SR=1/H
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READ (NIN,")
OPEN(NIN,FILE="DATA.OUT',STATUS='OLD’)
20 READ (NIN,*END=120) N
IF (N.GT.1 .AND. N.LENMAX) THEN
DO40J=0,N-1
READ(NIN,%X(J)
40 CONTINUE
IFAIL = 0

¥

CALL CO6EAF(X,N,IFAIL)

WRITE (NOUT,*) :
WRITE (NOUT,*) 'Components of discrete Fourier transform’
WRITE (NOUT,*)
WRITE (NOUT,*) ' Real Imag'
WRITE (NOUT,989)
980 FORMAT(2X,N',6X, Frequency(f)',3X,'Amplitude(C)',

A(0) = X(0)

B(0) = 0.0D0

N2 = (N-1)/2

DO 60T =1,N2
NJ=N-J
A = X
A(ND) = X()
B(J) = X(NJ)
B(NJ) = -X(NJ)

60 CONTINUE

IF (MOD(N,2).EQ.0) THEN
A(N2+1) = X(N2+1)
B(N2+1) = 0.0D0

END IF

DO8T=0,N-1
A(D=AJ)N**5
B(J)=B(J)/N**5
POWER()=(A(J)**2+B(J)**2)
AMP(J)=SQRT(2.*POWER(J))
WRITE (NOUT,99999) J, A(J), B(J)

80 CONTINUE

CALL CO06GBF(X,N,IFAIL)
CALL CO6EBF(X,N,IFAIL)

WRITE (NOUT,¥)
WRITE (NOUT,*)

101
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WRITE (NOUT,*)

+ 'Original sequence as restored by inverse transform’
WRITE (NOUT,*)
WRITE (NOUT,*)" Original Restored'
WRITE (NOUT,*)

DO 100J=0,N-1
RESOL=SR/FLOAT(N)
FREQ=J*¥*RESOL
WRITE (NOUT,99) J,FREQ, AMP(I),POWER(J}

99999  FORMAT(1X,15,3F10.6)
100 CONTINUE
GO TO 20
ELSE
WRITE (NOUT,*) 'Tnvalid value of N'
END IF
120 STOP

99 FORMAT(4,3(5X.F10.6))
END

Appendix D: Amplitude & Frequency Modulations

The amplitude modulation is the process of varying the amplitude of the
high frequency sinusoidal signal known as the carrier signal by a
modulating signal. The resulting amplitude modulated waveform contains
the carrier frequency, an upper side frequency equal to the summation of

the carrier frequency and the modulation frequency, and a lower side

frequency equal to their difference.

The frequency modulation is the process of varying the frequency of a

carrier signal in proportion to a modulation signal. The carrier amplitude of

a frequency modulated wave is kept constant during modulation.
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